18 months starting September 2020

Post-doctoral position in organic chemistry/photo-bio-chemistry

Over the last decade, photothermal therapy (PTT) have attracted increasing attention as a potential alternative to classical ones. It involves both molecules or nanoparticles absorbing photons upon NIR irradiation and generating heat through non-radiative relaxation pathways.

In this context, applications are open for a postdoctoral fellowship position funded by the “FireLight” projet-FEDER – Photoactive molecules and nanoparticles. The position will be based at L2CM laboratory in Nancy (France). The research program will focus on the synthesis of calixarene derivatives and the characterization of the optical and photophysical properties of the resulting molecular self-assemblies and calixarene-MoS2 nanoparticles assembled systems. The project will also include photobiochemical characterization triggering anti-bacterial applications.

Skills/Qualifications: Candidates for this postdoctoral fellowship must hold a PhD degree in organic chemistry, preferably with experience in photobiochemistry. Creativity, autonomy and strong reliability are highly required. All applicants must be able to communicate fluently in French and/or English (speaking and writing). The position is available for a period of 18 months, starting from September 2020.

Selection process: Interested candidates should send a CV, a scientific track record, a motivation letter and two recommendation letters to:

Prof. Jean-Bernard Regnouf de Vains / Prof. Andreea Pasc

Contact: jean-bernard.regnouf@univ-lorraine.fr; andreea.pasc@univ-lorraine.fr

Application deadline 15 juin.

Prof. Andreea Pasc - Contacter
L2CM - Laboratoire Lorraine de Chimie Moléculaire
Université de Lorraine
Campus Aiguillette
Nancy

Autres offres d'emploi

Retour à la liste
18 months starting September 2020

Post-doctoral position in cell biology/cancer photobiology

Photothermal therapy (PTT) is one of the most efficient therapies that can induce necrosis of specific malignant lesions with minimal invasiveness and side effects compared with other therapeutic modalities.

In this context, applications are open for a postdoctoral fellowship position funded by the “FireLight” projet-FEDER – Photoactive molecules and nanoparticles.

The position will be based at L2CM (http://www.l2cm.univ-lorraine.fr/l2cm/), CRAN (http://www.cran.univ-lorraine.fr/) and ICL (http://www.icl-lorraine.fr/) laboratories in Nancy (France).

The research program will focus on the development of indocyanine green (ICG) loaded Solid Lipid Nanoparticles (SLN) and on the characterization of photophysical (size and charges measurements, spectral characterization, thermal effect) and photobiological properties (uptake, intracellular fluorescence and localization, therapeutic efficiency). The biological model used will be 2D and 3D cell cultures and animal models.

Selection process: Interested candidates should send a CV, a scientific track record, a motivation letter and two recommendation letters to:

Dr. Henri-Pierre Lassalle / Prof. Andreea Pasc

Contact: henri-pierre.lassalle@univ-lorraine.fr; andreea.pasc@univ-lorraine.fr

Skills/Qualifications: Candidates for this postdoctoral fellowship must hold a PhD degree in cell biology, good knowledge in photobiology will be required, as well as experience in animal experiments (the authorization to experiment on animals will be highly appreciated). Creativity, autonomy and strong reliability are highly required. All applicants must be able to communicate fluently in French and/or English (speaking and writing). The position is available for a period of 18 months, starting from September 2020.

Keywords: Cancer, Nanoparticle, Photothermal therapy (PTT), NIR fluorescence, Indocyanine green, Photodiagnosis.

du 01-10-2019 au 30-09-2022

PhD position: Photoactive Iron Complexes: Design and Application to Solar Energy

Filled

The aim of the thesis program is to develop photosensitive compounds from low-cost and environmentally friendly metal complexes. While ruthenium complexes have been widely studied and used in many laboratory applications because of their ideal photophysical properties, ruthenium is a rare, toxic and expensive metal, which limits real industrial development. Our project aims to replace this metal with other metals such as iron, which is strategic in the search for low-cost devices and industrial processes that conserve resources. In particular, we are targeting the development of photosensitizers for the manufacture of dye solar cells (DSSCs).